n Σ i = 1 | f (i) = f (1) + f (2)+ f (3) + ... +f (n) |
Σ i | f (i) = f (1) + f (2)+ f (3) + ... +f (n) |
10 Σ i = 1 | i = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 |
3 Σ i = 1 | i2 = 1 + 4 + 9 = 14 |
5 Σ i = 2 | Xi = X2 + X3 + X4 + X5 |
n Σ i = 1 | 1 = 1 + 1 + 1 + ... + 1 = n |
n Σ i = 1 | i = 1 + 2 + 3 + ... + n = | 1![]() 2 |
n(n+1) |
n Σ i = 1 | i2 = 1 + 4 + 9 + ... + n2 = | 1![]() 6 |
n(n+1)(2n+1) |
n Σ i = 1 | i3 = 1 + 8 + 27 + ... + n3 = { | 1![]() 2 |
n(n+1)} 2 |
n Σ i = 1 | cf (i) = c | n Σ i = 1 | f (i) (但し c は i に関係ない定数) |
n Σ i = 1 | {f (i) + g (i)}= | n Σ i = 1 | f (i) + | n Σ i = 1 | g (i) |
(a + b)n = | n Σ r = 0 | nCra(n-r)br | = an + na(n-1)b + | 1![]() 2 |
n(n-1) | a(n-2)b2 + ... |
+ | 1![]() 2 |
n(n-1) | a2b(n-2) + nab(n-1)+ bn |
n!![]() (n-r)!r! |
= | n(n-1)・・・(n-r+1)![]() r(r-1)(r-2)・・・1 | (→順列組合入門へ) |
n | r | → | 0 | ||||||||||||||
↓ | / | 1 | |||||||||||||||
0 − | 1 | / | 2 | ||||||||||||||
1 − | 1 | 1 | / | 3 | |||||||||||||
2 − | 1 | 2 | 1 | / | 4 | ||||||||||||
3 − | 1 | 3 | 3 | 1 | / | 5 | |||||||||||
4 − | 1 | 4 | 6 | 4 | 1 | / | 6 | ||||||||||
5 − | 1 | 5 | 10 | 10 | 5 | 1 | / | 7 | |||||||||
6 − | 1 | 6 | 15 | 20 | 15 | 6 | 1 | / | |||||||||
7 − | 1 | 7 | 21 | 35 | 35 | 21 | 7 | 1 | |||||||||
nCr |
nPr = | n!![]() (n-r)! |
= | n(n-1)・・・(n-r+1) |
nCr = | nPr![]() r! | = | n!![]() (n-r)!r! |
= | n(n-1)・・・(n-r+1)![]() r(r-1)(r-2)・・・1 |
nHr = n+r-1Cr = | (n+r-1)!![]() (n-1)!r! |
= | (n+r-1)(n+r-2)・・・n![]() r(r-1)(r-2)・・・1 |
脚注 | |
※ | n! は n の階乗と呼ばれ、n! = n×(n-1)×(n-2)×・・・×3×2×1 である。 |
0! = 1 と約束する。 |