|
![]() |
H(A) = Ar log2 | 1![]() Ar |
+ Aw log2 | 1![]() Aw |
(bit) |
H(A) = H(p) = p log2 | 1![]() p |
+ (1-p) log2 | 1![]() 1-p |
(bit) |
H(B) = Br log2 | 1![]() Br |
+ Bw log2 | 1![]() Bw |
(bit) |
今、簡単の為に、赤を白と誤る確率と白を赤と誤る確率が同じであるとして、Crw = Cwr = r とします。
Crr = Cww = 1 - r となります。
このような伝言者を対称チャンネルと呼びます。
|
![]() |
H(B) = H(p,r) = (p(1-r) + (1-p)r) log2 | 1![]() p(1-r) + (1-p)r |
+ (pr + (1-p)(1-r)) log2 | 1![]() pr + (1-p)(1-r) |
(bit) |
H(B|A) = | Ar(Crr log2 | 1![]() Crr |
+ Crw log2 | 1![]() Crw |
) + | Aw(Cwr log2 | 1![]() Cwr |
+ Cww log2 | 1![]() Cww |
) |
H(B|A) = H(r) = | (1-r) log2 | 1![]() 1-r |
+ | r log2 | 1![]() r |
(bit) |
H(A|B) = | Br(Drr log2 | 1![]() Drr |
+ Drw log2 | 1![]() Drw |
) + | Bw(Dwr log2 | 1![]() Dwr |
+ Dww log2 | 1![]() Dww |
) |
P(r,r) = Ar Crr = Br Drr より、 | Drr = | Ar Crr![]() Br |
P(r,w) = Ar Crw = Bw Dwr より、 | Dwr = | Ar Crw![]() Bw |
P(w,r) = Aw Cwr = Br Drw より、 | Drw = | Aw Cwr![]() Br |
P(w,w) = Aw Cww = Bw Dww より、 | Dww = | Aw Cww![]() Bw |
H(A|B) = | Br( | Ar Crr![]() Br | log2 | Br![]() Ar Crr |
+ | Aw Cwr![]() Br | log2 | Br![]() Aw Cwr |
) |
+ | Bw( | Ar Crw![]() Bw | log2 | Bw![]() Ar Crw |
+ | Aw Cww![]() Bw | log2 | Bw![]() Aw Cww |
) |
= | Ar(Crr log2 | Br![]() Ar Crr |
+ | Crw log2 | Bw![]() Ar Crw |
) |
+ | Aw(Cwr log2 | Br![]() Aw Cwr |
+ | Cww log2 | Bw![]() Aw Cww |
) |
H(A|B) = | p((1-r) log2 | p(1-r) + (1-p)r![]() p(1-r) |
+ | r log2 | pr + (1-p)(1-r)![]() pr |
) |
+ | (1-p)(r log2 | p(1-r) + (1-p)r![]() (1-p)r |
+ | (1-r) log2 | pr + (1-p)(1-r)![]() (1-p)(1-r) |
) |
H(A, B) = | Ar(Crr log2 | 1![]() Ar Crr |
+ | Crw log2 | 1![]() Ar Crw |
) |
+ | Aw(Cwr log2 | 1![]() Aw Cwr |
+ | Cww log2 | 1![]() Aw Cww |
) |
H(A, B) = | p((1-r) log2 | 1![]() p(1-r) |
+ | r log2 | 1![]() pr |
) |
+ | (1-p)(r log2 | 1![]() (1-p)r |
+ | (1-r) log2 | 1![]() (1-p)(1-r) |
) |